Principal toroidal bundles over Cauchy-Riemann products

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Toroidal Bundles over Cauchy - Riemann Products

The main result we obtain is that given t N M a TS-subbundle of the generalized Hopf fibration t H2+’cP over a Cauchy-Riemann product M _ cP, i.e. N _ H is a diffeomorphism on fibres and oj= ot, if s is even and N is a closed submanifold tangent to the structure vectors of the canonical 5Zstructure on H then N is a Cauchy-Riemann submanifold whose Chen class is non-vanishing.

متن کامل

Principal Bundles over Statistical Manifolds

In this paper, we introduce the concept of principal bundles on statistical manifolds. After necessary preliminaries on information geometry and principal bundles on manifolds, we study the α-structure of frame bundles over statistical manifolds with respect to α-connections, by giving geometric structures. The manifold of one-dimensional normal distributions appears in the end as an applicatio...

متن کامل

Holomorphic Fiber Bundles over Riemann Surfaces

For the purpose of this paper a fiber bundle F—>X over a Riemann surface X is meant to be a fiber bundle in the sense of N. Steenrod [62] where the base space is X, the fiber a complex space, the structure group G a complex Lie group that acts as a complex transformation group on the fiber, and the transition functions g%j{x) are holomorphic mappings into G. Correspondingly, cross-sections are ...

متن کامل

Cotensor products of quantum principal bundles

A cotensor product A HP of an H-Hopf Galois extension A and a C-coalgebra Galois extension P , such that P is an (H,C)-bicomodule, is analyzed. Conditions are stated, when A HP is a C-coalgebra Galois extension and when there exists a strong connection on A HP . Two examples are given, in both, A and P are Matsumoto spheres, and H = C = C(U(1)).

متن کامل

Schottky Uniformization and Vector Bundles over Riemann Surfaces

We study a natural map from representations of a free group of rank g in GL(n,C), to holomorphic vector bundles of degree 0 over a compact Riemann surface X of genus g, associated with a Schottky uniformization of X . Maximally unstable flat bundles are shown to arise in this way. We give a necessary and sufficient condition for this map to be a submersion, when restricted to representations pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 1990

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171290000448